[postlink]https://simple-video.blogspot.com/2011/11/bbc-nature-brinicle-ice-finger-of-death.html[/postlink]
http://www.youtube.com/watch?v=LMhBuSBemRk&feature=topvideos_scienceendofvid
[starttext]
As brine from the sea ice sinks, a 'brinicle' forms threatening life on the sea floor with a frosty fate.
A bizarre underwater "icicle of death" has been filmed by a BBC crew.
With timelapse cameras, specialists recorded salt water being excluded from the sea ice and sinking.
The temperature of this sinking brine, which was well below 0C, caused the water to freeze in an icy sheath around it.
Where  the so-called "brinicle" met the sea bed, a web of ice formed that  froze everything it touched, including sea urchins and starfish.
The  unusual phenomenon was filmed for the first time by cameramen Hugh  Miller and Doug Anderson for the BBC One series Frozen Planet.
Creeping ice
The  icy phenomenon is caused by cold, sinking brine, which is more dense  than the rest of the sea water. It forms a brinicle as it contacts  warmer water below the surface.
Mr Miller set up the rig of timelapse  equipment to capture the growing brinicle under the ice at Little  Razorback Island, near Antarctica's Ross Archipelago.
"When we were  exploring around that island we came across an area where there had been  three or four [brinicles] previously and there was one actually  happening," Mr Miller told BBC Nature.
The diving specialists noted the temperature and returned to the area as soon as the same conditions were repeated.
"It was a bit of a race against time because no-one really knew how fast they formed," said Mr Miller.
"The one we'd seen a week before was getting longer in front of our eyes... the whole thing only took five, six hours."
Against the odds
The location - beneath the ice off the foothills of the volcano Mount Erebus, in water as cold as -2C - was not easy to access.
"That  particular patch was difficult to get to. It was a long way from the  hole and it was quite narrow at times between the sea bed and the ice,"  explained Mr Miller.
"I do remember it being a struggle... All the  kit is very heavy because it has to sit on the sea bed and not move for  long periods of time."
As well as the practicalities of setting up  the equipment, the filmmakers had to contend with interference from the  local wildlife.
The large weddell seals in the area had no problems barging past and breaking off brinicles as well as the filming equipment.
"The first time I did a timelapse at the spot a seal knocked it over," said Mr Miller.
But the team's efforts were eventually rewarded with the first ever footage of a brinicle forming.
HOW DOES A BRINICLE FORM?
Dr Mark Brandon
Polar oceanographer, The Open University
Freezing  sea water doesn't make ice like the stuff you grow in your freezer.  Instead of a solid dense lump, it is more like a seawater-soaked sponge  with a tiny network of brine channels within it.
In winter, the  air temperature above the sea ice can be below -20C, whereas the sea  water is only about -1.9C. Heat flows from the warmer sea up to the very  cold air, forming new ice from the bottom. The salt in this newly  formed ice is concentrated and pushed into the brine channels. And  because it is very cold and salty, it is denser than the water beneath.
The  result is the brine sinks in a descending plume. But as this extremely  cold brine leaves the sea ice, it freezes the relatively fresh seawater  it comes in contact with. This forms a fragile tube of ice around the  descending plume, which grows into what has been called a brinicle.
Brinicles  are found in both the Arctic and the Antarctic, but it has to be  relatively calm for them to grow as long as the ones the Frozen Planet  team observed.
[endtext]